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Abstract. We study the Abelian Higgs model using an improved form of the action in the scalar sector. The
subleading corrections are carefully analyzed and the connection between lattice and continuous parameters
is worked out. The model is simulated for mH = 30GeV and a remarkable improvement of the numerical
performance is achieved for this value of the Higgs mass.

1 Introduction

The Abelian Higgs model has mostly been studied in re-
cent years as a theoretical laboratory in the context of the
electroweak baryogenesis scenario. As is well known by
now, the lattice investigations of the model are very de-
manding in computer power and time. It would be helpful
to use an improved form of the lattice action, so that a
reasonable accuracy may be reached through the use of
relatively small lattices.

We did not try an improvement on the pure gauge sec-
tor of the action. The strategy which is usually followed
does not seem very reliable: actually it leaves behind sev-
eral subleading contributions, so it is not very efficient in
eliminating all of the unwanted terms. On the other hand,
the weak coupling regime where these simulations are per-
formed suggest that the improvement of the gauge sector
may not be very important. We mainly concentrated on
improving the scalar sector; the procedure suffers more or
less from the same problems; however, even a modest im-
provement is very important in this case. The model on
which we will work has been treated before [1], so we have
reference results to compare with.

A promising approach to study the four-dimensional
model at a finite temperature is through reduction to an
effective model in three dimensions. This can be done if
the couplings are small and the temperature is much larger
than any other mass scale in the theory. The parameters
of the reduced theory are related to the ones of the origi-
nal model through perturbation theory. The reduced the-
ory has some advantages over the original one from the
computational point of view. It is super-renormalizable
and yields transparent relations between the (dimension-
ful) continuous parameters and the lattice ones. Moreover,
the number of mass scales is drastically reduced: (a) the
scale T , present in four dimensions is evidently absent; (b)
one may also integrate out the temporal component A0 of
the gauge field, so its mass scale gT also disappears. Thus

there are two mass scales less and this reduces substan-
tially the computer time needed to get reliable results.

The action for the U(1) gauge–Higgs model at finite
temperature is

S[Aµ(τ, x̄), ϕ(τ, x̄)] =
∫ β

0
dτ
∫

d3x

[
1
4
FµνFµν

+ |Dµϕ|2 +m2ϕ∗ϕ+ λ(ϕ∗ϕ)2
]
, (1)

where β = 1/T .
If the action is expressed in terms of Fourier compo-

nents, the mass terms are of the type

[(2πnT )2 + (�k)2]|Aµ(n,�k)|2, (2)

[(2πnT )2 + (�k)2]|ϕ(n,�k)|2, (3)
where n = −∞, . . . ,∞.

At high temperatures T and energy scales less than
2πT the non-static modes Aµ(n �= 0,�k), ϕ(n �= 0,�k)
are then suppressed by the factor (2πnT )2 relative to the
static Aµ(n = 0,�k) and ϕ(n = 0,�k) modes. The method
of dimensional reduction consists in integrating out the
non-static modes in the action and deriving an effective
action [2]. We notice that the mass of the adjoint Higgs
field is of order gT , which is large compared to g2T , the
typical scale of the theory. Thus, we integrate it out using
perturbation theory [3].

The effective action may then be written in the form

S3D eff [Ai(�x), ϕ3(�x)] =
∫

d3x

[
1
4
FijFij + |Diϕ3|2

+ m2
3ϕ

∗
3ϕ3 + λ3(ϕ∗

3ϕ3)2
]
. (4)

The index 3 in (4) is for the 3D character of the theory.
The relations between the 4D and 3D parameters are (up
to one loop)
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g2
3 = g2(µ)T, (5)

λ3 = Tλ(µ) − g4
3

8πmD
, (6)

m2
3(µ3) =

1
4
g2
3T +

1
3

(
λ3 +

g4
3

8πmD

)
T − g2

3mD

4π
− 1

2
m2

H ,

m2
D =

1
3
g2(µ)T 2. (7)

It is convenient to use the new set of parameters (g2
3 , x, y)

rather than the set (g2
3 , λ3, µ

2
3). x, y are defined by [4]

x =
λ3

g2
3
, (8)

y =
m2

3(g
2
3)

g4
3

. (9)

It is evident that x is just proportional to the ratio of the
squares of the scalar and vector masses; y is related to
the temperature. The parameters x, y can be expressed in
terms of the four-dimensional parameters as follows [5]:

x =
1
2
m2

H

m2
W

−
√

3g
8π

, (10)

y =
1

4g2 +
1

3g2

(
x+

√
3g

8π

)
− 1

4π
√

3g
− m2

H

2g4T 2 . (11)

We have concentrated on the phase transition line. We
have chosen to fix the Higgs mass to a fixed value (30 GeV),
g to 1/3, mW to 80.6 GeV and study the characteristics
of the phase transition.

2 The improved lattice action

The whole idea of improving the lattice action has been
put forward [6–10] to enhance the performance of the lat-
tice calculations. The lattice actions, when expanded in
powers of the lattice spacing a, yield the terms of the con-
tinuum action plus subleading terms, i.e. terms multiplied
by higher powers of a. The procedure is to include addi-
tional terms in the action, so that the corrections that re-
main in the naive continuum limit start at a higher power
of the lattice spacing, as compared to the usual action.
This work follows most closely [10].

2.1 The pure gauge part

The pure gauge part is expressed by the plaquette term in
the action. We use the non-compact formulation; the ini-
tial action is defined by βg

∑
x

∑
0<i<j F

2
ij , where Fij ≡

∆f
i Aj(x)−∆f

jAi(x), ∆f
i Aj(x) ≡ Aj(x+ î)−Aj(x). In the

following we treat the part of the action having to do with
the x–y plane, i.e. we consider a two-dimensional model;
generalization to include the remaining hyperplanes is
straightforward. In addition, we consider for both the

gauge and the scalar field part of the action two versions
of the improvement: the “continuum” and the lattice ver-
sion. In the former case, a lattice with spacing equal to
a is embedded in the continuum space-time and objects
resembling the usual lattice quantities are considered. An
interpolation is used, which makes it easy to eliminate
all of the a2 subleading terms both in the gauge and the
scalar field sectors. The lattice approach is the treatment
of the actual lattice model. It is not in general possible to
eliminate all of the a2 terms and one should be content
with a partial cancellation.

2.1.1 Lattice embedded in the continuum

We consider the quantities

C11 ≡
∫ + 1

2

− 1
2

dtAx

(
x+ at, y − a

2

)

+
∫ + 1

2

− 1
2

dtAy

(
x+

a

2
, y + at

)

−
∫ + 1

2

− 1
2

dtAx

(
x+ at, y +

a

2

)

−
∫ + 1

2

− 1
2

dtAy

(
x− a

2
, y + at

)
,

C12 ≡
∫ +1

−1
dtAx

(
x+ at, y − a

2

)

+
∫ + 1

2

− 1
2

dtAy(x+ a, y + at)

−
∫ +1

−1
dtAx(x+ at, y + a)

−
∫ + 1

2

− 1
2

dtAy(x− a, y + at),

C21 ≡
∫ + 1

2

− 1
2

dtAx(x+ at, y − a)

+
∫ +1

−1
dtAy

(
x+

a

2
, y + at

)

−
∫ + 1

2

− 1
2

dtAx(x+ at, y + a)

−
∫ +1

−1
dtAy

(
x− a

2
, y + at

)
.

Notice that C11 represents a continuum version of the 1×1
plaquette, while the two terms C12, C21 represent the 1×2
and 2 × 1 plaquettes.

One then expands these quantities in powers of a and
ends up with

a−1C11 � [∂xAy − ∂yAx] +
1
24
a2

× [∂xxxAy − ∂yyyAx + ∂xyyAy − ∂xxyAx] (12)
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a−1C12 � 2[∂xAy − ∂yAx] +
1
12
a2

× [4∂xxxAy − ∂yyyAx + ∂xyyAy − 4∂xxyAx] (13)

a−1C21 � 2[∂xAy − ∂yAx] +
1
12
a2

× [∂xxxAy − 4∂yyyAx + 4∂xyyAy − ∂xxyAx] (14)

The terms that will appear in the action can be written
more simply by using the notations F ≡ ∂xAy − ∂yAx,
P ≡ ∂xxxAy − ∂yyyAx + ∂xyyAy − ∂xxyAx. They read, up
to O(a2),

a−2(C11)2 � F 2 +
1
12
a2FP,

a−2(C12)2 + a−2(C21)2 � 8F 2 +
5
3
a2FP. (15)

Now it is easy to write down the expression for the action
up to O(a2) :

a−2S =
∑
x,y

[Aa−2(C11)2 +Ba−2{(C12)2 + (C21)2}]

�
∑
x,y

[
A

(
F 2 +

1
12
a2FP

)

+ B

(
8F 2 +

5
3
a2FP

)]
. (16)

We observe that in general we get the continuum action
plus the FP terms, which are lattice artifacts. If our aim
is to better approach the continuum action, we should
arrange that these artificial terms vanish; in addition, the
coefficient of the F 2 term should be one. This is easy in
this approach: we just choose A = 5/3, B = −1/12. Thus
the improved action reads

S =
∑

x,y,µ<ν

[
5
3

(Cµν
11 (x, y))2 − 1

12
(Cµν

12 (x, y))2

− 1
12

(Cµν
21 (x, y))2

]
.

2.1.2 Actual lattice formulation

In actual lattice calculations one cannot use the interpola-
tion of the previous section, namely the one based on the
t-integrations. One has link variables and the plaquettes
used in the action are sums of four (or six) such variables.
It is therefore very interesting to find out how the above
analysis is modified if the real situation on the lattice is
considered. We will use the same plaquettes as above and
Taylor expand in powers of a. To be specific we note that
the 1 × 1 plaquette is the sum

Ax

(
x, y − a

2

)
+Ay

(
x+

a

2
, y
)

−Ax

(
x, y +

a

2

)
−Ay

(
x− a

2
, y
)
, (17)

while the 2 × 1 and 1 × 2 plaquettes are the sums

Ax(x, y − a) +Ay

(
x+

a

2
, y − a

2

)
+Ay

(
x+

a

2
, y +

a

2

)
−Ax(x, y + a)

−Ay

(
x− a

2
, y +

a

2

)
−Ay

(
x− a

2
, y − a

2

)
, (18)

and

Ax

(
x− a

2
, y − a

2

)
+Ax

(
x+

a

2
, y − a

2

)
+Ay(x+ a, y) −Ax

(
x− a

2
, y +

a

2

)
−Ax

(
x+

a

2
, y +

a

2

)
−Ay(x− a, y), (19)

respectively. The result of the expansion in a is

a−1P11 = (∂xAy − ∂yAx)

+
a2

24
(∂xxxAy − ∂yyyAx) +O(a4).

The results for the two remaining plaquettes are

a−1P12 = 2(∂xAy − ∂yAx)

+
a2

12
(∂xxxAy + 3∂xyyAy − 4∂yyyAx) +O(a4),

a−1P21 = 2(∂xAy − ∂yAx)

+
a2

12
(−∂yyyAx − 3∂xxyAx + 4∂xxxAy) +O(a4).

It is straightforward to verify

a−2P 2
11 = F 2 +

a2

12
(−(∂xxAy)2 − (∂yyAx)2

+ ∂xyAx∂xxAy + ∂xyAy∂yyAx) +O(a4),

a−2(P 2
12 + P 2

21) = 8F 2 − 5a2

3
[(∂xxAy)2 + (∂yyAx)2]

+O(a4) +
8a2

3
[(∂xxAy)(∂xyAx) + (∂yyAx)(∂xyAy)]

−a2[(∂xyAx)2 + (∂xyAy)2]. (20)

Now we may consider the linear combination found above
and see what is the outcome:

a−2S =
5
3
a−2P 2

11 − 1
12
a−2(P 2

12 + P 2
21),

with the Taylor expansion

F 2 +
a2

12
[(∂xF )2 + (∂yF )2] (21)

+
29a2

18
[(∂xxAy)(∂xyAx)

+ (∂yyAx)(∂xyAy) − (∂xxAy)2

− (∂yyAx)2] +O(a4) (22)
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We observe that several a2 terms do not vanish with this
(or any other) choice of parameters. We have a difficulty,
stemming from the nature of the actual lattice expression
of the gauge fields. A possibility to eliminate these un-
wanted terms might be to employ further different kinds
of plaquettes; however, what really happens is that, when
bigger plaquettes are considered, new terms appear that
cannot vanish against existing terms.

An interesting remark is that one may choose differ-
ent coefficients from the ones based on [10] and find nicer
expressions on the right hand side:

− 1
11
P 2

11 +
3
22

(P 2
12 + P 2

21) = F 2 − 3a2

22
[(∂xF )2 + (∂yF )2].

We have decided to use the standard non-compact Wilson
action (with no improvement) for the gauge part, mainly
because of this difficulty and the consideration of the fact
that we intend to use the action in the weak gauge cou-
pling regime, so the subleading terms are not expected to
be too serious.

2.2 The gauge-scalar part

We now go ahead with the gauge-scalar sector of the ac-
tion. The part that needs improvement is of course the
kinetic term, the only term involving derivatives. We feel
that in the weak gauge coupling regime that we will study
it is important to improve mainly this part. Following the
scheme of the previous subsection, we first consider the
lattice embedded in a continuous space-time and after-
wards we turn to the actual problem that we face on the
lattice.

2.2.1 Lattice embedded in the continuum

We start by writing down the continuum kinetic term in
the µ̂ direction for the scalar field:

φ∗(∂µ − iAµ)2φ+ h.c. = φ∗′′φ− φ∗φA2 − iφ∗φA′

− 2iφ∗′φA+ h.c., (23)

where the primes denote differentiations with respect to
xµ and by A we understand Aµ.

The kinetic term in the continuum involves the expres-
sion

φ∗(x)P e
∫ x+aµ̂

x
Aµdxµ

φ(x+ aµ̂) + h.c. (24)

Thus we choose to approximate this kinetic term by the
expression

Sh1 ≡ φ∗(x)eia
∫ 1
0 dtA(x+atµ̂)φ(x+ aµ̂) + h.c. (25)

and Taylor expand it in powers of a. The result is found
to be

φ∗′′φ − φ∗φA2 − iφ∗φA′ − 2iφ∗′φA

+ a2
(

−1
3
φ∗φAA′′ − 1

12
φ∗φA4

− 1
4
φ∗φA′2 +

i
2
φ∗φA2A′

)

+ a2
(

− i
3
φ∗′φA′′ +

i
3
φ∗′φA3

− i
12
φ∗φA′′′ − i

3
φ∗′′′φA− i

2
φ∗′′φA′

)

+ a2
(

−1
2
φ∗′′φA2 − φ∗′φAA′ +

1
12
φ∗′′′′φ

)
+ O(a4) + h.c.

As we would like to eliminate the subleading terms, we
can add next-to-nearest neighbor terms with suitable co-
efficients. We consider only up to second neighbors; that
is, we consider terms of the form

Sh2 ≡ φ∗(x)eia
∫ 2
0 dtA(x+atµ̂)φ(x+ 2aµ̂) + h.c. (26)

The result of the Taylor expansion contains terms quali-
tatively similar to the previous ones:

4(φ∗′′φ− φ∗φA2 − iφ∗φA′ − 2iφ∗′φA)

+16a2
(

−1
3
φ∗φAA′′ − 1

12
φ∗φA4

− 1
4
φ∗φA′2 +

i
2
φ∗φA2A′

)

+16a2
(

− i
3
φ∗′φA′′ +

i
3
φ∗′φA3 − i

12
φ∗φA′′′

− i
3
φ∗′′′φA− i

2
φ∗′′φA′

)

+16a2
(

−1
2
φ∗′′φA2 − φ∗′φAA′ +

1
12
φ∗′′′′φ

)
+O(a4) + h.c.

It is easily seen that it is possible to choose the coeffi-
cients such that the a2 subleading terms vanish. One need
only consider the combination +(4/3)Sh1 − (1/12)Sh2. It
is trivial to check that the result for the Taylor expansion
of this combination reads

φ∗′′φ− φ∗φA2 − iφ∗φA′ − 2iφ∗′φA+O(a4) + h.c.,

which is actually the continuum action (23).

2.2.2 Actual lattice formulation

As in the previous case, on the lattice we do not have
exactly the forms (25) and (26) for the kinetic terms.
The scalar-field kinetic term before improvement reads∑

x,µ̂ φ
∗(x)Uxµ̂φ(x + aµ̂) + h.c. To begin with, we write

down the Taylor expansion of the expression Slatt
h1 ≡

a−1φ∗(x)eiaAµ(x+(a/2)µ̂)φ(x+ aµ̂) + h.c. The result is

φ∗′′φ − iφ∗φA′ − 2iφ∗′φA− φ∗φA2 + h.c.

+ a2
(

−1
4
φ∗φA′2 − 1

12
φ∗φA4 +

1
3

iφ∗′φA3
)
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+ a2
(

1
2

iφ∗φA2A′ − 1
2
φ∗′′φA2 − φ∗′φAA′

)

+ a2
(

−1
3

iφ∗′′′φA+
1
12
φ∗′′′′φ− 1

2
iφ∗′′φA′

)

+ a2
(

−1
4
φ∗φA′′A− 1

4
iφ∗′φA′′ − 1

24
iφ∗φA′′′

)
+ O(a4) + h.c. (27)

We see immediately that we have terms of order a2, which
we would like to discard by the improved action. Our step
towards the improvement will be to consider the next-
to-nearest neighbor terms, namely

∑
x,µ̂ φ

∗(x)Uxµ̂Ux+µ̂,µ̂

φ(x+ 2aµ̂) + h.c.
In the following lines we give the Taylor expansion of

the expression Slatt
h2 ≡ φ∗(x)eiaAµ(x+(a/2)µ̂)eiaAµ(x+(3a/2)µ̂)

φ(x+ 2aµ̂) + h.c. :

4φ∗′′φ − 4iφ∗φA′ − 8iφ∗′φA− 4φ∗φA2

+ a2
(

−4φ∗φA′2 − 4
3
φ∗φA4 +

16
3

iφ∗′φA3
)

+ a2(8iφ∗φA2A′ − 8φ∗′′φA2 − 16φ∗′φAA′)

+ a2
(

−16
3

iφ∗′′′φA+
4
3
φ∗′′′′φ− 8iφ∗′′φA′

)

+ a2
(

−5φ∗φA′′A− 5iφ∗′φA′′ − 7
6

iφ∗φA′′′
)

+ O(a4) + h.c. (28)

The next natural step to be taken is, of course, to use the
coefficients found before and see whether the a2 subleading
contributions go away or not. The result for the linear
combination +(4/3)Slatt

h1 − (1/12)Slatt
h2 is

φ∗′′φ − iφ∗φA′ − 2iφ∗′φA− φ∗φA2 (29)

+ a2
(

1
12
φ∗φA′′A+

1
12

iφ∗′φA′′ +
1
24

iφ∗φA′′′
)
.

We observe that the a2 contributions do not vanish com-
pletely; the terms in the last lines of (27) and (28) survive.
However, we observe that a good deal of the a2 contribu-
tions (9 terms out of 12), present in the non-improved
expression (27) have disappeared. The conclusion is that
we do not really manage to get rid of all the subleading
contributions of order a2, but we expect that we come
closer to the continuum limit, so, presumably, the numer-
ical behavior of the improved action should be better; this
has been confirmed by the simulations.

Thus, gathering everything together, we conclude that
the improved action reads

S = βg

∑
x

∑
0<i<j

F 2
ij + βh

∑
x

∑
0<i

[
4
3

(ϕ∗(x)ϕ(x)

− ϕ∗(x)Ui(x)ϕ(x+ î)) − 1
12

(ϕ∗(x)ϕ(x)

− ϕ∗(x)Ui(x)Ui(x+ î)ϕ(x+ 2̂i))
]

+
∑

x

[(
1 − 2βR − 3

5
4
βh

)
ϕ∗(x)ϕ(x)

+ βR(ϕ∗(x)ϕ(x))2
]

(30)

where Fij = ∆f
i Aj(x) −∆f

jAi(x).
To compare the results of this work with the ones of

[1] as well as of [5,11] we need the connection of the lattice
parameters and the continuum ones. As a first step in this
direction we perform in the appendix the relevant one-
loop calculation for the improved action (30). The result
reads

βg =
1
ag2

3
, (31)

βR =
xβ2

h

4βg
, (32)

2β2
g

1 − 3 5
4βh − 2βR

βh
= y−(1+4x)

Σ′βg

4π
−Σβg

4π
−βg

12
, (33)

where Σ = 3.176 and Σ′ = 2.752. In the appendix we
prove the relation (33).

3 Results

We used the Metropolis algorithm for the updating of both
the gauge and the Higgs field. It is known that the scalar
fields have much longer autocorrelation times than the
gauge fields. Thus, special care must be taken to increase
the efficiency of the updating for the Higgs field. We made
the following additions to the Metropolis updating proce-
dure [4]:
(a) Global radial update: We update the radial part of the
Higgs field by multiplying it by the same factor at all sites:
R(�x) → eξR(�x), where ξ ∈ [−ε, ε] is randomly chosen. The
quantity ε is adjusted such that the acceptance rate is kept
between 0.6 and 0.7. The probability for the updating is
P (ξ) = min{1, exp(2V ξ − ∆S(ξ))} where ∆S(ξ) is the
change in the action, while the 2V ξ term comes from the
change in the measure.
(b) Higgs field overrelaxation: We write the Higgs poten-
tial at �x in the form

V (ϕ(�x)) = −a · F +R2(�x) + βR(R2(�x) − 1)2, (34)

where

a ≡
(
R(�x) cosχ(�x)
R(�x) sinχ(�x)

)
,

F ≡
(
F1

F2

)
,

F1 ≡ βh

∑
i

[
4
3
R(�x+ î) cos(χ(�x+ î) + θ(�x))

− 1
12
R(�x+ 2̂i) cos(χ(�x+ 2̂i) + θ(�x) + θ(�x+ î))

]
,
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F2 ≡ βh

∑
i

[
4
3
R(�x+ î) sin(χ(�x+ î) + θ(�x))

− 1
12
R(�x+ 2̂i) sin(χ(�x+ 2̂i) + θ(�x) + θ(�x+ î))

]
.

We can perform the change of variables (a,F) →
(X,F,Y), where

F ≡ |F|, f ≡ F√
F 2

1 + F 2
2

, X ≡ a · f , Y ≡ a −Xf .

(35)
The potential may be rewritten in terms of the new vari-
ables

V̄ (X,F,Y) = −XF + (1 + 2βR(Y2 − 1))X2

+ Y2(1 − 2βR) + βR(X4 + Y4). (36)

The updating of Y is done simply by the reflection

Y → Y′ = −Y. (37)

The updating of X is performed by solving the equation

V̄ (X ′, F,Y) = V̄ (X,F,Y) (38)

with respect to X ′. Noting that X ′ = X is obviously a
solution, we may factor out the quantity X ′ −X and re-
duce the quartic equation into a cubic one, which may be
solved. The change X → X ′ is accepted with probabil-
ity P (X ′) = min{P0, 1}, where P0 ≡ (∂V̄ (X,F,Y)/∂X)/
(∂V̄ (X ′, F ′,Y′)/∂X ′).

For our Monte Carlo simulations we used cubic lattices
with volumes V = 83, 123, 163. For each volume we per-
formed 30,000–50,000 thermalization sweeps and 60,000–
100,000 measurements. We have set the value of x equal
to 0.0463. According to the relation (10) using mW =
80.6 GeV and g = 1/3 this value of x corresponds to a
Higgs field mass mH = 30 GeV. For each value of βh we
determine the value of βR by using the relation (32). The
phase transition is expected to be of first order for such a
low mass of the scalar field.

We have used five quantities to determine the phase
transition points:
(1) The distribution N(Elink) of Elink.
(2) The susceptibility of Elink ≡ (1/3V )

∑
x,iΩ

∗(x)Ui(x)
Ω(x+ i) (we have set ϕ(x) ≡ R(x)eiχ(x) ≡ R(x)Ω(x)):

S(Elink) ≡ V (〈(Elink)2〉 − 〈Elink〉2).
(3) The susceptibility of R2 ≡ (1/V )

∑
xR

2(x) :

S(R2) ≡ V (〈(R2)2〉 − 〈R2〉2);
(4) The Binder cumulant of Elink:

C(Elink) = 1 − 〈(Elink)4〉
3〈(Elink)2〉2 ;

(5) The Binder cumulant of R ≡ (1/V )
∑

xR(x):

C(R) = 1 − 〈(R)4〉
3〈(R)2〉2 .

The pseudocritical β∗
h(A, V ) values have been found by

determining (a) equal heights of the two peaks of the
distribution N(Elink), (b) the maxima of the quantities
S(Elink), S(R2), and (c) the minima of the cumulants
C(Elink), C(R). The values β∗

h(A, V ) depend on the spe-
cific quantity (denoted by A) which has been employed,
as well as on the volume V . It has to be noticed that we
have made use of the Ferrenberg–Swendsen reweighting
technique [12] as a guide in our searches for the pseud-
ocritical βh for the volume 163. Apart from serving as
a guide, the Ferrenberg–Swendsen method has also been
used to calculate some points in the graphs. In particu-
lar, in the figures below we only show explicitly the points
obtained through simulations; however, to complete the
data at places away from the critical regions, we have also
used Ferrenberg–Swendsen points, which are not shown.
The curves shown are fitted through the simulation and
the Ferrenberg–Swendsen points.

In Fig. 1 we depict the behavior of the susceptibility
S(Elink) versus βh for three lattice volumes. For simplic-
ity we give the actual measurements for the largest vol-
ume only. The curves represent the data quite nicely. In
calculating the error bars we first found the integrated
autocorrelation times τint(A) for the relevant quantities
A and constructed samples of data separated by a num-
ber of steps greater than τint(A). Then the errors were
calculated by the Jacknife method [13], using the samples
constructed according to the procedure just described. No-
tice that the peak values increase almost linearly with the
volume which is characteristic of a first order transition.

In Figs. 2 and 3 we depict the behavior of the Binder
cumulants C(Elink) and C(R) for three lattice sizes. Again,
we show the real measurements for the largest volume.
The error bars have been calculated, also, by the Jacknife
method.

The volume dependence of the cumulants display evi-
dence for a first order phase transition.

The different values of β∗
h(A, V ) corresponding to the

quantities A are due to the finite lattices used. So, we
should extrapolate these values to infinite volume adopt-
ing the ansatz

β∗
h(A, V ) = βcr

h (∞) +
c(A)
V

.

The extrapolated value βcr
h (∞) should not depend on the

quantity A because this is the infinite volume extrapola-
tion for the critical point.

Figure 4 shows the extrapolation to infinite volume us-
ing data for the pseudocritical β∗

h(A, V ) values obtained
from the various quantities A versus the inverse lattice vol-
ume, along with the linear fits to the data. The error bars
in β∗

h(A, V ) have been calculated from the statistical error
of the values of the quantities A at the critical point. One
can observe that, at, finite volumes, the smallest pseudo-
critical values are given by the cumulant of Elink; then, in
ascending order, the values given by the cumulant of R,
the equal height, the susceptibility of Elink and the suscep-
tibility of R2. Also, we notice that the infinite volume ex-
trapolation is almost independent from the specific quan-
tity used; the differences at the point 1/V = 0 between the
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various extrapolated values are less than 10−5. The critical
values lie in the interval (0.269176, 0.269183). In our previ-
ous publication [1] where we worked with the same model,
but without any improvement to the Higgs part of the ac-
tion, we found that for the same value of βg the critical βh

values were lying in the interval (0.336932, 0.336940). Al-
though the precision is comparable, one should notice that
the result presented here has been found by using three
times smaller lattice volumes than the previous one, which
means much shorter computer time. Evidently, this result
is due to the effect of improving the lattice Higgs action
which provides a quicker approach to the thermodynamic
limit.

We can now predict the critical temperature Tcr. Ac-
tually, the quantity βcr

h yields ycr through (32) and (33);
then (11) gives Tcr = 130.64(19). In [1] using two-loop
calculations it was found that Tcr = 131.18(14) while a
one-loop calculation would give Tcr = 130.74(14). Thus,
the two one-loop results are almost identical, but the first
one has been achieved in a more economical way due to
the improved action used.
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Appendix

We want to prove the relation (33), which relates the
masses on the lattice and in the continuum up to one-loop
perturbation theory. In general we have

m2
L = m2

3 − δm2
L(h). (39)

The counterterm will be calculated by considering the 1/a
terms from the one-loop lattice effective potential [14].

We consider the pure gauge and gauge fixing part of
the action (30). We use the relation βg = 1/(g2

3a) and
write down the kinetic term:

Sg = a3
∑

x

1
4

∑
i �=j

(
∆f

i Aj −∆f
jAi

a

)2

.

Let us comment on the gauge fixing term, which is the
new element here. For the perturbative treatment of Higgs
models it is usual to employ the Rξ gauges. This choice is
dictated by its simplicity, since then the mixing terms be-
tween the gauge field and the would-be Goldstone bosons
vanish. However, one should be careful with this gauge,
since the so-called Nielsen identities [16] should be satis-
fied [17]. This severely restricts the possible Rξ gauges;
violation of these identities will lead to unphysical results.
This is the reason that we have chosen to stick to the
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Lorentz gauge fixing for the gauge action,

Lgf =
a

2ξ

∑
x

∑
i

[Ai(x) −Ai(x− î)]2.

This gauge does not face the previous complications, so
we prefer to stay on the safe side, at the price, of course,
of also having to deal with the non-vanishing mixed terms.
Note that we take the Landau gauge ξ = 0 at the end of
the calculations.

Going to the Fourier space (notice that Aµ(x) =∫
(d3p/(2π)3)eip(x+(aµ̂/2))Ãµ(p)), we find

Sg + Sgf =
1
2

∫
d3p

(2π)3
∑

i,j>0

Ãi(p)

×
[
(p̃2 +

(
1
ξ

− 1
)
p̃ip̃j

]
Ãj(−p), (40)

where
p̃i =

2
a

sin
pia

2
. (41)

Next we consider the part of the action involving the
scalar fields. We follow essentially the same procedure as
above, but a step that should be taken is the decomposi-
tion φ = (1/21/2)(φ0 + φ1 + iφ2) of the scalar field. Then
the rescaling (βh/2a)1/2ϕ = φ has to be performed to get
the corresponding part of the action in continuum form.
The Fourier transform of the relevant part of the action
reads

SH = +
1
2

∫
d3p

(2π)3
φ1(p)

(
p̃2 +

a2

12
p̃4 +m2

1

)
φ1(−p)

+
1
2

∫
d3p

(2π)3
φ2(p)

(
p̃2 +

a2

12
p̃4 +m2

2

)
φ2(−p)

+
∫

d3p

(2π)3
Ãi(p)

(mT

a
g̃i

)
φ2(−p)

+
1
2

∫
d3p

(2π)3
Ãi(p)

(
m2

T +
a2m2

T

12
p̃2i

)
Ãi(−p), (42)

with g̃i ≡ (5/4)p̃i−(1/12)p̂i. Let us collect some additional
notation that has just been used:

p̂i ≡ 2
a

sin
3pia

2
, p̃2 ≡

∑
i

p̃2i , p̃4 ≡
∑

i

p̃4i , (43)

m2
T ≡ g2

3φ
2
0, m2

1 ≡ m2
3(µ) + 3λ3φ

2
0,

m2
2 ≡ m2

3(µ) + λ3φ
2
0. (44)

Now, considering the quadratic part of the action, which
is contained in the above equations, it is easy to read out
the propagators D1, D2 of the fields φ1, φ2, respectively:

D−1
1 = p̃2 +

a2

12
p̃4 +m2

1, D−1
2 = p̃2 +

a2

12
p̃4 +m2

2. (45)

In the equation above the terms proportional to p̃4 arise
directly from the improvement terms in the scalar sector
concerning the next-to-nearest neighbor contribution.

The effective potential at one loop is found using the
relation

V one loop
L = − ln(Z),

where Z ≡ ∫
[Dφ1][Dφ2][DA]e−S . Keeping only the

quadratic part of the action we have just Gaussian in-
tegrations, so we easily get the result

V one loop
L =

1
2

∫
d3p

(2π)3
ln(D−1

1 ) +
1
2

∫
d3p

(2π)3
ln(D−1

2 )

+
1
2

∫
d3p

(2π)3
ln(det(∆−1

ij −Nij)), (46)

where

∆−1
ij −Nij =

(
p̃2 +m2

T +
a2m2

T

12
p̃ip̃j

)
δij

+ (ξ−1 − 1)p̃ip̃j −m2
T

g̃ig̃j

D−1
2
. (47)

We write the gauge propagator in this form to display the
contribution Nij ≡ m2

T (g̃ig̃j)/D−1
2 , which is due to the

mixing term between Ai and the imaginary part of the
Higgs field.

An integral which appears very frequently and should
be calculated is the following:

I(m) =
1
2

∫ π/a

−π/a

d3p

(2π)3
ln
(
p̃2 +

a2

12
p̃4 +m2

)
. (48)

If we differentiate the above with respect of m we take
dI(m) = mK(m)dm, (49)

where

aK(m) =
∫ π

−π

d3p

(2π)3
1

p̄2 + 1
12 p̄

4 +M2
, (50)

with M2 = (am)2, p̄2 = 4
∑

i sin2 pi/2 and p̄4 = 16
∑

i

sin4 pi/2. At this point we follow [15] where the expansion
of (50) in powers of M = am is to be used. In the fol-
lowing we denote by B the “Brillouin zone” [−π,+π]3; in
addition, Π̄2 ≡ p̄2 +(1/12)p̄4. Then the following equality
holds:∫

B

d3p

(2π)3
1

p̄2 + 1
12 p̄

4 +M2
=
∫

B

d3p

(2π)3
1
Π̄2

−
∫

B

d3p

(2π)3
M2

Π̄2(Π̄2 +M2)
.

The first integral equals Σ′/(4π); the contribution of the
second integral can be shown to be of O(a), so it will
not contribute to the infinite part. Gathering everything
together yields

K(m) =
Σ′

4πa
+ finite.

Hence, integrating (49) we get

I(m) =
1
2
Σ′

4πa
m2 + finite, (51)
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where

Σ′ =
1

(π)2

∫ π

0
d3p

1∑
i(sin

2 pi

2 + 1
3 sin4 pi

2

) (52)

is being calculated numerically at the value of Σ′ = 2.752.
Up to this point we are ready to calculate the infinite

part in the effective potential (behaving like 1/a) that is
due to the scalar fields only. The mass terms coming from
the fields φ1, φ2 are

1
2
Σ′

4πa
m2

1,
1
2
Σ′

4πa
m2

2,

respectively. Recalling (44), their derivatives with respect
to the classical field φ2

0 are

(3λ3 + λ3)
1
2
Σ′

4πa
= 4xg2

3
1
2
Σ′

4πa
. (53)

The next step is to calculate the gauge contribution to
the effective potential, that is the third term in (46). The
calculations are straightforward, but quite tedious; we just
mention that we directly expand the determinant and keep
contributions only up to order a2, since the a4 terms will
yield merely finite results, which are not our concern here.
We only write down the final result:

V one loop
L =

∫
d3p

(2π)3
[
ln(p̃2 +m2

T )2 + (ln p̃2 − ln ξ)

+ ln
(

1 + 2
(a2m2

T /12)
p̃2 +m2

T

p̃21p̃
2
2 + p̃22p̃

2
3 + p̃23p̃

2
1

p̃2

)
+ O(a4)

]
. (54)

We note that the second term is exactly the same as
the one appearing in the continuum counterpart of the
model, so they cancel upon comparison with the contin-
uum model. These terms do not depend on the mass, so
they present no interest for the calculation of the effective
potential anyway. We should note that we have not given
the full result of the third term; to keep things simple,
we gave its value for ξ = 0. The above expression can be
written as

1
2

∫ π/a

−π/a

d3p

(2π)3
ln
(
p̃2 +

a2

12
p̃4 +m2

T

)

+
1
2

∫ π/a

−π/a

d3p

(2π)3
ln(p̃2 +m2

T ) +
1
2

1
12a

m2
T . (55)

The integrals appearing in (55) have already been com-
puted; the infinite part of the effective potential reads

1
2

(
Σ′

4πa
m2

T +
Σ

4πa
m2

T +
1

12a
m2

T

)
. (56)

We invoke (44) and calculate again the second derivative
with respect to the classical field φ2

0 to find that the infinite
part reads

g2
3

2

(
Σ′

4πa
+

Σ

4πa
+

1
12a

)
. (57)

Collecting all the infinite contributions we can match the
counterterm equation and this yields

2β2
g

(
1
βh

− 3
5
4

− 2βR

βh

)

= y − (1 + 4x)
Σ′βg

4π
− Σβg

4π
− βg

12
,

which is (33).
Finally, we have no clue about the efficiency of this

improvement technique for large values of the Higgs mass.
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